

Published on Web 02/19/2004

Energy Transfer between Singlet ($^{1}\Delta_{g}$) and Triplet ($^{3}\Sigma_{g}^{-}$) Molecular Oxygen in Aqueous Solution

Glaucia R. Martinez,[†] Jean-Luc Ravanat,[‡] Jean Cadet,[‡] Sayuri Miyamoto,[†] Marisa H. G. Medeiros,[†] and Paolo Di Mascio^{*,†}

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, CEP 05513-970, Bloco 12 sala 1223, São Paulo, Brazil, and Laboratoire "Lésions des Acides Nucléiques", SCIB, DRFMC, CEA Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France

Received October 17, 2003; E-mail: pdmascio@iq.usp.br

Singlet oxygen in its first excited state, denoted as O_2 ($^1\Delta_g$), can be produced by type II photosensitization reaction¹ and chemically in the reaction of hydrogen peroxide with hypochlorite² or peroxynitrite,³ in the self-reaction of peroxyl radicals by the Russell mechanism,⁴ and through decomposition of dioxetanes⁵ and endoperoxides.⁶ O_2 ($^1\Delta_g$) is also generated enzymatically by peroxidases and oxidases.⁷ The presence of a pair of electrons with opposite spins in the highest occupied molecular orbital confers dienophile features to O_2 ($^1\Delta_g$) that explain its substantial reactivity toward electron-rich organic molecules, particularly with those exhibiting conjugated double bonds.⁸

We have recently synthesized the water-soluble ¹⁸O-labeled endoperoxide of *N*,*N'*-di(2,3-dihydroxypropyl)-1,4-naphthalene dipropanamide (DHPN¹⁸O₂).⁹ Thermal decomposition of the endoperoxide DHPN¹⁸O₂ generates high yields of ¹⁸O-labeled singlet oxygen [¹⁸O₂ (¹ Δ_g)] (Scheme 1). Oxidation products thus formed in the presence of such a generator of ¹⁸O₂ (¹ Δ_g) should be labeled with at least one ¹⁸O atom. Therefore, a mass spectrometry-based approach could be used to detect labeled products. Using electrospray ionization tandem mass spectrometry (ESI-MS/MS), we have shown that O₂ (¹ Δ_g) is able to react directly with cellular DNA to produce [¹⁸O]-8-oxo-7,8-dihydro-2'-deoxyguanosine ([¹⁸O]-8-oxodGuo).¹⁰ In addition, the labeled endoperoxide was successfully used to study the reaction of O₂ (¹ Δ_g) with 8-oxo-7,8-dihydroguanine (8-oxoGua) inserted into oligodeoxynucleotides¹¹ or as free nucleoside in aqueous solution.¹²

Jones and Bayes¹³ had demonstrated that, in the gas phase, O_2 (${}^{1}\Delta_{g}$) is able to transfer energy to ${}^{18}O_2$ in the ground state (${}^{3}\Sigma_{g}^{-}$) with subsequent conversion of the latter species into its singlet excited state (${}^{1}\Delta_{g}$). For this purpose, O_2 (${}^{1}\Delta_{g}$) was generated by gaseous discharge, and the gas in the flow system was sampled through a Pyrex pinhole into a quadrupole mass spectrometer equipped with an argon resonance lamp as the photoionization device. The argon resonance radiation (11.83, 11.62 eV) ionizes O_2 (${}^{1}\Delta_{g}$) but not O_2 (${}^{3}\Sigma_{g}^{-}$). Energy transfer to introduced ${}^{18}O_2$ (${}^{3}\Sigma_{g}^{-}$) was found to be an extremely fast process ($\sim 1 \times 10^{10}$ M⁻¹ s⁻¹) that occurs at least once in every 10 hard sphere collisions. It may be added that this does not involve atomic rearrangement.

We report in the present communication that such an energy transfer reaction may also occur in aqueous solution. This is inferred from the results of incubation experiments involving DHPN¹⁸O₂ as a chemical generator of ¹⁸O₂ ($^{1}\Delta_{g}$) and the water soluble disodium salt of anthracene-9,10-diyldiethyl disulfate (EAS) as a chemical trap of singlet oxygen. The products of the reaction (Scheme 1) were analyzed by ESI-MS measurement at the output of an HPLC column (see Supporting Information).

Scheme 1. Chemical Structure of DHPN and EAS and Related Endoperoxides^a

 a Thermal decomposition of DHPN¹⁸O₂ generates $^{18}O_2$ ($^1\Delta_g$), which is trapped by EAS to form the stable ^{18}O -labeled anthracene endoperoxide EAS¹⁸O₂.

Interestingly, both labeled (EAS $^{18}O_2$) and unlabeled (EAS $^{16}O_2$) anthracene endoperoxides were detected when EAS was incubated in the presence of DHPN¹⁸O₂ (Figure 1). The mass spectrum of the anthracene endoperoxide, in the negative ionization mode, exhibits two ions of similar intensity, one at m/z = 228 corresponding to the doubly charged unlabeled EAS16O2 molecule and another one at m/z = 230 that corresponds to the doubly charged labeled EAS18O2 molecule (Figure 1A). The presence of high amounts of unlabeled endoperoxide was not expected since the isotopic enrichment of DHPN¹⁸O₂ was almost 100% (see Supporting Information). Such a result suggests that unlabeled O_2 ($^1\Delta_{e}$) is produced under the latter conditions. The experiments were performed in the dark, ruling out the possibility for the formation of unlabeled O_2 (¹ Δ_g) by a photosensitization reaction. The ratio EAS18O2/EAS16O2 was found to be dependent on the presence of O_2 ($^{3}\Sigma_{g}^{-}$) into the solution. Purging the solution of EAS with N_2 prior to DHPN¹⁸O₂ addition was found to significantly reduce the formation of unlabeled EAS¹⁶O₂ (Figure 1B). In contrast, saturation of the EAS solution with $O_2 ({}^{3}\Sigma_g^{-})$ prior to addition of DHPN¹⁸O₂ gave rise to an increase in the relative formation of unlabeled endoperoxide EAS16O2 (Figure 1C). The ratios between labeled and unlabeled anthracene endoperoxides EAS¹⁸O₂/EAS¹⁶O₂ that were determined in the conditions described above are reported in Figure 2. Furthermore, using the efficient freezing and thawing method to remove O_2 from the solution, the amount of EAS¹⁸O₂ reached a 95% level (see Supporting Information).

Such an observation could be interpreted by an energy transfer process from $^{18}O_2~(^1\Delta_g)$ to $^{16}O_2~(^3\Sigma_g{}^-)$, generating $^{16}O_2~(^1\Delta_g)$ according to eq 1.

$${}^{18}\text{O}_2({}^{1}\Delta_g) + {}^{16}\text{O}_2({}^{3}\Sigma_g^{-}) \nleftrightarrow {}^{18}\text{O}_2({}^{3}\Sigma_g^{-}) + {}^{16}\text{O}_2({}^{1}\Delta_g)$$
(1)

Figure 1. ESI mass spectrometry analysis of EAS¹⁶O₂ and EAS¹⁸O₂ under various incubation conditions performed at 37 °C. (A) Reaction involving DHPN¹⁸O₂ in aqueous solution equilibrated with air. (B) Reaction involving DHPN¹⁸O₂ after bubbling N₂ for 15 min in an ice bath. (C) Reaction involving DHPN¹⁸O₂ after bubbling O₂ for 15 min in an ice bath. (D) Reaction involving DHPN¹⁶O₂ after saturating the solution with ¹⁸O₂.

Figure 2. Variations of EAS¹⁸O₂/EAS¹⁶O₂ ratios measured upon incubation of EAS with DHPN¹⁸O₂ under different oxygenation conditions. (i) Solution equilibrated with air, (ii) N₂ bubbling before incubation, and (iii) O₂ bubbling before incubation.

Another experiment was performed to confirm the occurrence of an energy transfer process. An aqueous solution of EAS was saturated with ¹⁸O₂ (${}^{3}\Sigma_{g}^{-}$) prior to incubation with DHPN¹⁶O₂, a source of unlabeled ¹⁶O₂ (${}^{1}\Delta_{g}$). The ESI mass spectrum of the anthracene derivative obtained under these conditions is reported in Figure 1D. EAS¹⁸O₂ was clearly produced, suggesting a transient formation of ¹⁸O₂ (${}^{1}\Delta_{g}$). It may be also noted that the ratio EAS¹⁸O₂/ EAS¹⁶O₂ increases when the concentration of DHPN¹⁸O₂ increases (see Supporting Information). This could be explained by the generation of high amounts of ¹⁸O₂ (${}^{1}\Delta_{g}$) due to decomposition of the labeled endoperoxide. Therefore, the solution becomes saturated with labeled oxygen and the importance of eq 1 is minimized.

The data presented herein help to explain previously reported results, where the formation of unlabeled products was detected, although the O_2 ($^1\Delta_g$) generator was completely labeled. A relevant example¹¹ concerns the reaction of O_2 ($^1\Delta_g$) with 8-oxoGua residue inserted into short oligodeoxynucleotides that has been shown to

lead to the almost quantitative formation of oxaluric acid. To unambiguously demonstrate the participation of O_2 ($^1\Delta_{\mathfrak{g}}$) in the oxidation reaction, DHPN18O2 has been used as a chemical generator of ${}^{18}\text{O}_2$ (${}^{1}\Delta_{\sigma}$). Interestingly, the oxidation products that were analyzed by HPLC-MS/MS were found to have incorporated one oxygen-18 atom, confirming the addition of ${}^{18}\text{O}_2$ (${}^{1}\Delta_{\circ}$) to the 8-oxoGua. However, while the isotopic purity of the DHPN18O2 used in that study was 95%, unlabeled products were significantly formed (up to 50%). The reason for the presence of unlabeled oxaluric acid was unclear, and a possible oxygen exchange between water and a reaction intermediate was proposed to explain the formation of unlabeled oligodeoxynucleotides. The latter results may now be reinterpreted in light of the present findings. Thus, the formation of the unlabeled oxaluric acid derivative is likely to be accounted for the generation of unlabeled O_2 ($^1\Delta_{e}$) through an energy transfer process between ${}^{18}O_2$ (${}^{1}\Delta_{\sigma}$) and ${}^{16}O_2$ (${}^{3}\Sigma_{\sigma}^{-}$) (eq 1).

Interestingly, occurrence of eq 1 was not observed in vivo conditions. Thus, incubation of cells in the presence of DHPN¹⁸O₂ was found to produce almost exclusively [¹⁸O]-8-oxodGuo.^{10,14} This may be explained by the low cellular concentration of molecular oxygen that minimizes the importance of eq 1.

Acknowledgment. Supported by the "Fundação de Amparo à Pesquisa do Estado de São Paulo", FAPESP (Brazil) and the "Conselho Nacional para o Desenvolvimento Científico e Tecnológico", CNPq (Brazil). G.R.M. and S.M. are recipients of FAPESP fellowships.

Supporting Information Available: ESI mass spectrum of DHPN¹⁸O₂ and HPLC-MS conditions of the analysis of EAS¹⁸O₂ and EAS¹⁶O₂ (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Foote, C. S. Photochem. Photobiol. 1991, 54, 659.
- (2) Held, A. M.; Halko, D. J.; Hurst, J. K. J. Am. Chem. Soc. 1978, 100, 5732.
- (3) (a) Di Mascio, P.; Bechara, E. J. H.; Medeiros, M. H. G.; Briviba, K.; Sies, H. *FEBS Lett.* **1994**, *355*, 287. (b) Miyamoto, S.; Martinez, G. R.; Martins, A. P. B.; Medeiros, M. H. G.; Di Mascio P. *J. Am. Chem. Soc.* **2003**, *125*, 4510.
- (4) (a) Russell, G. A. J. Am. Chem. Soc. 1957, 79, 3871. (b) Howard, J. A.; Ingold, K. U. J. Am. Chem. Soc. 1968, 90, 1057–1058. (c) Miyamoto, S.; Martinez, G. R.; Medeiros, M. H. G.; Di Mascio, P. J. Am. Chem. Soc. 2003, 125, 6172.
- (5) Briviba, K.; Saha-Möller, C. R.; Adam, W.; Sies, H. Biochem. Mol. Biol. Int. 1996, 38, 647.
- (6) Pierlot, C.; Aubry, J. M.; Briviba, K.; Sies, H.; Di Mascio, P. Methods Enzymol. 2000, 319, 3.
- (7) Cilento, G. In *Chemical and Biological Generation of Excited States*; Adam, W.; Cilento, G., Eds.; Academic Press: New York, 1982.
- (8) Frimer, A. A. *Singlet O*₂; CRC Press: Boca Raton, FL, 1985; Vols. I and II.
- (9) Martinez, G. R.; Ravanat, J.-L.; Medeiros, M. H. G.; Cadet, J.; Di Mascio, P. J. Am. Chem. Soc. 2000, 122, 10212.
- (10) Ravanat, J.-L.; Di Mascio, P.; Martinez, G. R.; Medeiros, M. H. G.; Cadet, J. J. Biol. Chem. 2000, 275, 40601.
- (11) Duarte, V.; Gasparutto, D.; Yamaguchi, L. F.; Ravanat, J.-L.; Martinez, G. R.; Medeiros, M. H. G.; Di Mascio, P.; Cadet, J. J. Am. Chem. Soc. 2000, 122, 12622.
- (12) Martinez, G. R.; Ravanat, J.-L.; Medeiros, M. H. G.; Cadet, J.; Di Mascio, P. Biol. Chem. 2002, 383, 607.
- (13) Jones, I. T. N.; Bayes, K. D. J. Chem. Phys. 1972, 57, 1003.
- (14) Ravanat, J. L.; Douki, T.; Duez, P.; Gremaud, E.; Herbert, K.; Hofer, T.; Lasserre, L.; Saint-Pierre, C.; Favier, A.; Cadet, J. *Carcinogenesis* 2002, 23, 1911–1918.

JA039111Z